Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 61
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1225-1239, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38621969

Ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed to investigate the impacts of Pruni Semen processed with different methods(raw and fried) on the liver and spleen metabolism in mice. A total of 24 male mice were randomly assigned to three groups: raw Pruni Semen group, fried Pruni Semen group, and control(deionized water) group. Mice in the three groups were orally administrated with 0.01 g·mL~(-1) Pruni Semen decoction or deionized water for one week. After that, the liver and spleen tissues were collected, and liquid chromatography-mass spectrometry(LC-MS)-based metabolomic analysis was carried out to investigate the impact of Pruni Semen on the liver and spleen metabolism in mice. Compared with thte control group, the raw Pruni Semen group showed up-regulation of 11 metabolites and down-regulation of 57 metabolites in the spleen(P<0.05), as well as up-regulation of 15 metabolites and down-regulation of 58 metabolites in the liver(P<0.05). The fried Pruni Semen group showed up-regulation of 31 metabolites and down-regulation of 10 metabolites in the spleen(P<0.05), along with up-regulation of 26 metabolites and down-regulation of 61 metabolites in the liver(P<0.05). The differential metabolites identified in the raw Pruni Semen group were primarily associated with alanine, aspartate, and glutamate metabolism, purine metabolism, amino sugar and nucleotide sugar metabolism, and D-glutamine and D-glutamate metabolism. The differential metabolites identified in the fried Pruni Semen group predominantly involved riboflavin metabolism, amino sugar and nucleotide sugar metabolism, purine metabolism, alanine, aspartate, and glutamate metabolism, D-glutamine and D-glutamate metabolism, and glutathione metabolism. The findings suggest that both raw and fried Pruni Semen have the potential to modulate the metabolism of the liver and spleen in mice by influencing the glutamine and glutamate metabolism.


Glutamic Acid , Spleen , Mice , Male , Animals , Semen , Glutamine , Aspartic Acid , Metabolomics/methods , Liver/metabolism , Alanine/metabolism , Amino Sugars/metabolism , Water/metabolism , Nucleotides/metabolism , Purines/metabolism , Sugars , Chromatography, High Pressure Liquid , Biomarkers/metabolism
2.
Front Neurol ; 14: 1159601, 2023.
Article En | MEDLINE | ID: mdl-37139054

Background: Increasing evidence suggests that insulin resistance is linked to cardiovascular disease and atherosclerosis. The triglyceride-glucose (TyG) index has proven to be a convincing marker to quantitatively evaluate insulin resistance. However, there is no relevant information about the relationship between the TyG index and restenosis after carotid artery stenting. Methods: A total of 218 patients were enrolled. Carotid ultrasound and computed tomography angiography were used to evaluate in-stent restenosis. A Kaplan-Meier analysis and Cox regression method were performed to analyze the correlation between TyG index and restenosis. Schoenfeld residuals were used to determine the proportional-hazards assumption. A restricted cubic spline method was used to model and visualize the dose-response relationship between the TyG index and the risk of in-stent restenosis. Subgroup analysis was also performed. Results: Thirty-one participants (14.2%) developed restenosis. The preoperative TyG index had a time-varying effect on restenosis. Within 29 months post-surgery, an increasing preoperative TyG index was linked to a significant increased risk of restenosis (hazard ratio: 4.347; 95% confidence interval 1.886-10.023). However, after 29 months, the effect was decreased, although not statistically significant. The subgroup analysis showed that the hazard ratios tended to be higher in the age ≤ 71 years subgroup (p < 0.001) and participants with hypertension (p < 0.001). Conclusion: The preoperative TyG index was significantly associated with the risk of short-term restenosis after CAS within 29 months post-surgery. The TyG index may be employed to stratify patients based on their risk of restenosis after carotid artery stenting.

3.
RSC Adv ; 13(16): 10873-10883, 2023 Apr 03.
Article En | MEDLINE | ID: mdl-37033434

Protoporphyrinogen oxidase (PPO) is a key enzyme in chlorophyll and heme biosynthesis, and the development of its inhibitors is of great importance both in the pharmaceutical and pesticide industries. However, the currently developed PPO inhibitors have insignificant bio-selectivity and have a serious impact on non-target organisms. In this study, a docking-based virtual screening approach combined with bio-activity testing was used to obtain novel selective inhibitors of PPO. The results of the bio-activity test showed that thirteen compounds showed 10-fold selectivity over human PPO. And the best selective compound, ZINC70338, has a K i value of 2.21 µM for Nicotiana tabacum PPO and >113-fold selectivity for human PPO. The selectivity mechanism of ZINC70338 in different species of PPO was then analyzed by molecular dynamics simulations to provide a design basis and theoretical guidance for the design of novel selective inhibitors.

4.
Fish Physiol Biochem ; 49(2): 239-251, 2023 Apr.
Article En | MEDLINE | ID: mdl-36859574

Blunt snout bream (Megalobrama amblycephala) is sensitive to hypoxia environment. Hypoxia-inducible factor (HIF) is the most critical factor in the HIF pathway, which strictly regulates the hypoxia stress process of fish. In this study, we found six hifα genes in blunt snout bream that demonstrated different expressions under hypoxia conditions. In HEK293T cells, all six hifαs were detected to activate the HRE region by luciferase reporter assay. More importantly, we identified two linkage-disequilibrium SNP sites at exon 203 and 752 of the hif2αb gene in blunt snout bream. Haplotype II (A203A752) and its homozygous diplotype II (A203A203A752A752) appeared frequently in a selected strain of blunt snout bream with hypoxia tolerance. Diplotype II has a lower oxygen tension threshold for loss of equilibrium (LOEcrit) over a similar range of temperatures. Moreover, its erythrocyte number increased significantly (p < 0.05) than those in diplotype I and diplotype III strains at 48 h of hypoxia. The enzymes related with hypoxia tolerant traits, i.e., reduced glutathione, superoxide dismutase, and catalase, were also significantly (p < 0.05) induced in diplotype II than in diplotype I or III. In addition, the expression of epo in the liver of diplotype II was significantly (p < 0.01) higher than that in the diplotype I or III strains at 48 h of hypoxia. Taken together, our results found that the hypoxia-tolerant-related diplotype II of hif2αb has the potential to be used as a molecular marker in future genetic breeding of hypoxia-tolerant strain.


Cyprinidae , Cypriniformes , Animals , Humans , Cyprinidae/metabolism , HEK293 Cells , Cypriniformes/metabolism , Mutation , Hypoxia/genetics , Hypoxia/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism
5.
Neural Regen Res ; 18(9): 1976-1982, 2023 Sep.
Article En | MEDLINE | ID: mdl-36926722

Stromal cell-derived factor-1 and its receptor C-X-C chemokine receptor 4 (CXCR4) have been shown to regulate neural regeneration after stroke. However, whether stromal cell-derived factor-1 receptor CXCR7, which is widely distributed in the developing and adult central nervous system, participates in neural regeneration remains poorly understood. In this study, we established rat models of focal cerebral ischemia by injecting endothelin-1 into the cerebral cortex and striatum. Starting on day 7 after injury, CXCR7-neutralizing antibody was injected into the lateral ventricle using a micro drug delivery system for 6 consecutive days. Our results showed that CXCR7-neutralizing antibody increased the total length and number of sprouting corticospinal tract fibers in rats with cerebral ischemia, increased the expression of vesicular glutamate transporter 1 and growth-related protein 43, markers of the denervated spinal cord synapses, and promoted the differentiation and maturation of oligodendrocyte progenitor cells in the striatum. In addition, CXCR7 antibody increased the expression of CXCR4 in the striatum, increased the protein expression of RAS and ERK1/2 associated with the RAS/ERK signaling pathway, and improved rat motor function. These findings suggest that CXCR7 improved neural functional recovery after ischemic stroke by promoting axonal regeneration, synaptogenesis, and myelin regeneration, which may be achieved by activation of CXCR4 and the RAS/ERK1/2 signaling pathway.

6.
Plant Biotechnol J ; 21(6): 1286-1300, 2023 06.
Article En | MEDLINE | ID: mdl-36952539

Brown planthopper (BPH, Nilaparvata lugens), a highly destructive insect pest, poses a serious threat to rice (Oryza sativa) production worldwide. Jasmonates are key phytohormones that regulate plant defences against BPH; however, the molecular link between jasmonates and BPH responses in rice remains largely unknown. Here, we discovered a Poaceae-specific metabolite, mixed-linkage ß-1,3;1,4-d-glucan (MLG), which contributes to jasmonate-mediated BPH resistance. MLG levels in rice significantly increased upon BPH attack. Overexpressing OsCslF6, which encodes a glucan synthase that catalyses MLG biosynthesis, significantly enhanced BPH resistance and cell wall thickness in vascular bundles, whereas knockout of OsCslF6 reduced BPH resistance and vascular wall thickness. OsMYC2, a master transcription factor of jasmonate signalling, directly controlled the upregulation of OsCslF6 in response to BPH feeding. The AT-rich domain of the OsCslF6 promoter varies in rice varieties from different locations and natural variants in this domain were associated with BPH resistance. MLG-derived oligosaccharides bound to the plasma membrane-anchored LECTIN RECEPTOR KINASE1 OsLecRK1 and modulated its activity. Thus, our findings suggest that the OsMYC2-OsCslF6 module regulates pest resistance by modulating MLG production to enhance vascular wall thickness and OsLecRK1-mediated defence signalling during rice-BPH interactions.


Hemiptera , Oryza , Animals , Glucans/metabolism , Oryza/genetics , Oryza/metabolism , Poaceae
7.
Front Microbiol ; 14: 1117644, 2023.
Article En | MEDLINE | ID: mdl-36819064

Background: Non-alcoholic fatty liver disease (NAFLD) represents a severe public health problem. Dysbiosis of gut microbiome has been identified as one of the key environmental factors contributing to NAFLD. As an essential nutrition, Vitamin D (VD) plays an important role in regulating gut microbiota based on its receptor (Vitamin D Receptor, VDR) which is highly expressed in the gastrointestinal tract. Methods: Rats were fed with HFD (high-fat diet) for 12 weeks. And the rats were treated with VD two times a week by intraperitoneal injection for 12 weeks. H&E staining combined with plasma biochemical index was performed to characterize pathological changes and function of the liver. Fecal microbiota 16S rRNA gene sequencing and metabolomics were taken to reveal the altered gut microbiota and metabolites. Result: The VD alleviates the HFD-induced lipid accumulation in the liver as well as decreases the levels of amlodipine besylate (ALT) and amlodipine aspartate (AST). VD supplement decreased the ratio of phylum Firmicutes/Bacteroidetes (F/B) but increased alpha diversity. In addition, the VD treatment improved the HFD-induced gut microbiota by increasing the Prevotella and Porphyromonadaceae and decreasing Mucispirillum, Acetatifactor, Desulfovibrio, and Oscillospira abundance. Furthermore, the capability of tyrosine metabolism, tryptophan metabolism, arginine biosynthesis, and sphingolipid metabolism was enhanced after VD treatment. Consistently, Prevotella positively correlated with tryptophan metabolism and sphingolipid metabolism. Importantly, the Prevotella abundance was positively associated with serotonin, melatonin, tryptamine, L-arginine, and 3-dehydrosphinganine which synthesize from tryptophan, tyrosine, arginosuccinate, and serine, respectively. Conclusion: VD treatment inhibited HFD-induced NAFLD accompany by dysbiosis gut microbiota and metabolites, suggesting that VD supplement could be a potential intervention used for NAFLD treatment by targeting the specific microbiota.

8.
Cell Death Discov ; 9(1): 59, 2023 Feb 11.
Article En | MEDLINE | ID: mdl-36774369

Lipopolysaccharide (LPS) displays a robust immunostimulatory ability upon Toll-like receptor 4 (TLR4) recognition. N-methyl-D-aspartate receptors (NMDARs) are highly compartmentalized in most cells and implicated in various inflammatory disorders. However, the relationship between TLR4 and NMDARs has not been explored deeply. This study aimed to examine the role of NMDARs and its specific inhibitor MK801 in LPS-treated endothelial cell dysfunction and the related mechanism in vivo and in vitro. The results showed that pre-treatment with MK801 significantly decreased LPS-induced cell death, cellular Ca2+, cellular reactive oxygen species, and glutamate efflux. Moreover, MK801 restrained LPS-induced mitochondrial dysfunction by regulating mitochondrial membrane potential and mitochondrial Ca2+ uptake. The oxygen consumption, basal and maximal respiration rate, and ATP production in LPS-treated HUVECs were reversed by MK801 via regulating ATP synthesis-related protein SDHB2, MTCO1, and ATP5A. The molecular pathway involved in MK801-regulated LPS injury was mediated by phosphorylation of CaMKII and ERK and the expression of MCU, MCUR1, and TLR4. LPS-decreased permeability in HUVECs was improved by MK801 via the Erk/ZO-1/occluding/Cx43 axis. Co-immunoprecipitation assay and western blotting showed three subtypes of NMDARs, NMDAζ1, NMDAε2, and NMDAε4 were bound explicitly to TLR4, suppressed by LPS, and promoted by MK801. Deficiency of NMDAζ1, NMDAε2, or NMDAε4 induced cell apoptosis, Ca2+ uptake, ROS production, and decreased basal and maximal respiration rate, and ATP production, suggesting that NMDARs integrity is vital for cell and mitochondrial function. In vivo investigation showed MK801 improved impairment of vascular permeability, especially in the lung and mesentery in LPS-injured mice. Our study displayed a novel mechanism and utilization of MK801 in LPS-induced ECs injury and permeability.

9.
Parasit Vectors ; 16(1): 28, 2023 Jan 24.
Article En | MEDLINE | ID: mdl-36694228

BACKGROUND: Neospora caninum infection is a major cause of abortion in cattle, which results in serious economic losses to the cattle industry. However, there are no effective drugs or vaccines for the control of N. caninum infections. There is increasing evidence that microRNAs (miRNAs) are involved in many physiological and pathological processes, and dysregulated expression of host miRNAs and the biological implications of this have been reported for infections by various protozoan parasites. However, to our knowledge, there is presently no published information on host miRNA expression during N. caninum infection. METHODS: The expression profiles of miRNAs were investigated by RNA sequencing (RNA-seq) in caprine endometrial epithelial cells (EECs) infected with N. caninum at 24 h post infection (pi) and 48 hpi, and the functions of differentially expressed (DE) miRNAs were predicted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The transcriptome data were validated by using quantitative real-time polymerase chain reaction. One of the upregulated DEmiRNAs, namely chi-miR-146a, was selected to study the effect of DEmiRNAs on the propagation of N. caninum tachyzoites in caprine EECs. RESULTS: RNA-seq showed 18 (17 up- and one downregulated) and 79 (54 up- and 25 downregulated) DEmiRNAs at 24 hpi and 48 hpi, respectively. Quantitative real-time polymerase chain reaction analysis of 13 randomly selected DEmiRNAs (10 up- and three downregulated miRNAs) confirmed the validity of the RNA-seq data. A total of 7835 messenger RNAs were predicted to be potential targets for 66 DEmiRNAs, and GO and KEGG enrichment analysis of these predicted targets revealed that DEmiRNAs altered by N. caninum infection may be involved in host immune responses (e.g. Fc gamma R-mediated phagocytosis, Toll-like receptor signaling pathway, tumor necrosis factor signaling pathway, transforming growth factor-ß signaling pathway, mitogen-activated protein kinase signaling pathway) and metabolic pathways (e.g. lysine degradation, insulin signaling pathway, AMP-activated protein kinase signaling pathway, Rap1 signaling pathway, calcium signaling pathway). Upregulated chi-miR-146a was found to promote N. caninum propagation in caprine EECs. CONCLUSIONS: This is, to our knowledge, the first report on the expression profiles of host miRNAs during infection with N. caninum, and shows that chi-miR-146a may promote N. caninum propagation in host cells. The novel findings of the present study should help to elucidate the interactions between host cells and N. caninum.


MicroRNAs , Neospora , Animals , Cattle , MicroRNAs/genetics , Transcriptome , Goats , Immunity
10.
Front Microbiol ; 13: 1034839, 2022.
Article En | MEDLINE | ID: mdl-36439854

Background: Obesity has become a global health and socioeconomic problem because of an inadequate balance between energy intake and energy expenditure. Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) are the two most commonly used strategies for weight loss, which have been proven to benefit from gut microbiota restoration. Methods: Rats received SG, RYGB, and sham operations for 10 weeks. At the end of the experiment, the fecal microbiota was analyzed using 16s rRNA gene sequencing. In addition, the shift in the plasma metabolism of rats that underwent RYGB surgery was analyzed using untargeted metabolomics. The crosstalk between microbiome and metabolites was revealed using metabolic pathway enrichment and integrated analysis. Result: The SG surgery induced a modest shift in the gut microbiota relative to the RYGB. RYGB significantly decreased the alpha diversity and Firmicutes/Bacteroides (F/B) ratio and increased the proportion of Escherichia, Bacteroides, and Akkermansia genera compared to sham and SG operations. The predicted function of gut microbiota revealed that the RYGB surgery uniquely enhanced the capability of linoleic acid and sphingolipid metabolism. Furthermore, the circulating serine, phosphatidylcholine (PC) 20:5/22:5, riboflavin, L-carnitine, and linoleic acid were evaluated after RYGB surgery. In addition, the metabolic pathway enrichment and integrated analysis suggest that the RYGB induced Escherichia, Bacteroides, and Akkermansia might inhibit the sphingonine and phytosphingosine metabolisms from serine and promote the PC (20:5/22:5) metabolism to produce linoleic acid. Conclusion: This comprehensive analysis not only revealed the difference in the gut microbiota shifts after SG and RYGB but also discovered the perturbative changes in microbial communities and metabolic pathways after RYGB surgery, which provided clues for improving the beneficial effect of RYGB in metabolic disease intervention via regulating bacterial-metabolite crosstalk.

11.
Clin Nutr ; 41(12): 2706-2719, 2022 12.
Article En | MEDLINE | ID: mdl-36351362

BACKGROUND & AIMS: The interplay among dietary intake, gut microbiota, gut metabolites and circulating metabolites in adolescents is barely known, not to mention sex-dependent pattern. We aimed to explore unique profiles of gut bacterial, gut metabolites and circulating metabolites from both genders of adolescents due to BMI and eating pattern. METHODS: Clinical indices, fecal gut microbiota, fecal and plasma metabolites, and diet intake information were collected in case-control sample matched for normal and obesity in girls (normal = 12, obesity = 12) and boys (normal = 20, obesity = 20), respectively. 16S rRNA gene sequencing and untargeted metabolomics was performed to analysis the signature of gut microbiota and metabolites. Unique profiles of girls associated with BMI and eating pattern was revealed by Spearman's correlations analysis, co-occurrence network analysis, Kruskal-Wallis test, and Wilcoxon rank-sum test. RESULTS: Gender difference was found between normal and obese adolescents in gut microbiota, fecal metabolites, and plasma metabolites. The Parabacteroides were only decreased in obese girls. And the characteristic of obese girls' and boys' cases in fecal and plasma was xanthine and glutamine, ornithine and LCA, respectively. Soy products intake was negatively associated with Parabacteroides. The predicted model has a higher accuracy based on the combined markers in obesity boys (AUC = 0.97) and girls (AUC = 0.97), respectively. CONCLUSIONS: Reduced abundance of Phascolarctobacterium and Parabacteroides, as well as the increased fecal xanthine and ornithine, may provide a novel biomarker signature in obesity girls and boys. Soy products intake was positively and negatively associated with Romboutsia and Parabacteroides abundance, respectively. And the combined markers facilitate the accuracy of predicting obesity in girls and boys in advance.


Gastrointestinal Microbiome , Pediatric Obesity , Adolescent , Humans , Female , Male , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S , Feces/microbiology , Metabolome , Eating , Biomarkers , Ornithine , Xanthines
12.
Microbiol Spectr ; 10(6): e0261222, 2022 12 21.
Article En | MEDLINE | ID: mdl-36227107

Endometrial cancer (EC) is the most prevalent gynecological malignancy, with a higher risk in obese woman, indicating the possibility of gut microbiota involvement in EC progression. However, no direct evidence of a relationship between EC and gut microbiota in humans has been discovered. Here, we performed 16S rRNA sequencing to explore the relationship between dysbiosis of gut microbiota and cancer development in different types of EC patients. The results clearly show the differential profiles of gut microbiota between EC patients and normal participants as well as the association between gut microbiota and EC progression. Targeted metabolomics of plasma revealed an increased level of C16:1 and C20:2, which was positively associated with the abundance of Ruminococcus sp. N15.MGS-57. The higher richness of Ruminococcus sp. N15.MGS-57 in EC subjects not only was positively associated with blood C16:1 and C20:2 but also was negatively correlated with betalain and indole alkaloid biosynthesis. Furthermore, the combined marker panel of gut bacteria, blood metabolites, and clinical indices could distinguish the EC patients under lean and overweight conditions from normal subjects with high accuracy in both discovery and validation sets. In addition, the alteration of tumor microenvironment metabolism of EC was characterized by imaging mass microscopy. Spatial visualization of fatty acids showed that C16:1 and C18:1 obviously accumulate in tumor tissue, and C16:1 may promote EC cell invasion and metastasis through mTOR signaling. The aberrant fecal microbiome, more specifically, Ruminococcus sp. N15.MGS-57 and spatially distributed C16:1 in EC tissues, can be used as a biomarker of clinical features and outcomes and provide a new therapeutic target for clinical treatment. IMPORTANCE A growing number of studies have shown the connection between gut microbiota, obesity, and cancer. However, to our knowledge, the association between gut microbiota and endometrial cancer progression in humans has not been studied. We recruited EC and control individuals as research participants and further subgrouped subjects by body mass index to examine the association between gut microbiota, metabolites, and clinical indices. The higher richness of Ruminococcus sp. N15.MGS-57 in EC subjects was not only positively associated with blood C16:1 but also negatively correlated with betalain and indole alkaloid biosynthesis. Spatial visualization of fatty acids by imaging mass microscopy showed that C16:1 obviously accumulates in tumor tissue, and C16:1 may promote the EC cell invasion and metastasis through mTOR signaling. The aberrant fecal microbiome, more specifically, Ruminococcus sp. N15.MGS-57 and spatially distributed C16:1, can be used as a biomarker of clinical features and outcomes and provide a new therapeutic target for clinical treatment.


Endometrial Neoplasms , Gastrointestinal Microbiome , Female , Humans , RNA, Ribosomal, 16S/genetics , Obesity/microbiology , Feces/microbiology , Biomarkers , Fatty Acids , Indole Alkaloids , TOR Serine-Threonine Kinases , Tumor Microenvironment
14.
Parasit Vectors ; 15(1): 297, 2022 Aug 24.
Article En | MEDLINE | ID: mdl-35999576

BACKGROUND: The effective transmission mode of Neospora caninum, with infection leading to reproductive failure in ruminants, is vertical transmission. The uterus is an important reproductive organ that forms the maternal-fetal interface. Neospora caninum can successfully invade and proliferate in the uterus, but the molecular mechanisms underlying epithelial-pathogen interactions remain unclear. Accumulating evidence suggests that host long noncoding RNAs (lncRNAs) play important roles in cellular molecular regulatory networks, with reports that these RNA molecules are closely related to the pathogenesis of apicomplexan parasites. However, the expression profiles of host lncRNAs during N. caninum infection has not been reported. METHODS: RNA sequencing (RNA-seq) analysis was used to investigate the expression profiles of messenger RNAs (mRNAs) and lncRNAs in caprine endometrial epithelial cells (EECs) infected with N. caninum for 24 h (TZ_24h) and 48 h (TZ_48 h), and the potential functions of differentially expressed (DE) lncRNAs were predicted by using Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of their mRNA targets. RESULTS: RNA-seq analysis identified 1280.15 M clean reads in 12 RNA samples, including six samples infected with N. caninum for 24 h (TZ1_24h-TZ3_24h) and 48 h (TZ1_48h-TZ3_48h), and six corresponding control samples (C1_24h-C3_24h and C1_48h-C3_48h). Within the categories TZ_24h-vs-C_24h, TZ_48h-vs-C_48h and TZ_48h-vs-TZ_24h, there were 934 (665 upregulated and 269 downregulated), 1238 (785 upregulated and 453 downregulated) and 489 (252 upregulated and 237 downregulated) DEmRNAs, respectively. GO enrichment and KEGG analysis revealed that these DEmRNAs were mainly involved in the regulation of host immune response (e.g. TNF signaling pathway, MAPK signaling pathway, transforming growth factor beta signaling pathway, AMPK signaling pathway, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway), signaling molecules and interaction (e.g. cytokine-cytokine receptor interaction, cell adhesion molecules and ECM-receptor interaction). A total of 88 (59 upregulated and 29 downregulated), 129 (80 upregulated and 49 downregulated) and 32 (20 upregulated and 12 downregulated) DElncRNAs were found within the categories TZ_24h-vs-C_24h, TZ_48h-vs-C_48h and TZ_48h-vs-TZ_24h, respectively. Functional prediction indicated that these DElncRNAs would be involved in signal transduction (e.g. MAPK signaling pathway, PPAR signaling pathway, ErbB signaling pathway, calcium signaling pathway), neural transmission (e.g. GABAergic synapse, serotonergic synapse, cholinergic synapse), metabolism processes (e.g. glycosphingolipid biosynthesis-lacto and neolacto series, glycosaminoglycan biosynthesis-heparan sulfate/heparin) and signaling molecules and interaction (e.g. cytokine-cytokine receptor interaction, cell adhesion molecules and ECM-receptor interaction). CONCLUSIONS: This is the first investigation of global gene expression profiles of lncRNAs during N. caninum infection. The results provide valuable information for further studies of the roles of lncRNAs during N. caninum infection.


Coccidiosis , Neospora , RNA, Long Noncoding , Animals , Coccidiosis/veterinary , Cytokines/genetics , Epithelial Cells/metabolism , Female , Gene Expression Profiling , Goats , Humans , Neospora/genetics , Neospora/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Cytokine/genetics , Sequence Analysis, RNA
15.
Front Nutr ; 9: 932670, 2022.
Article En | MEDLINE | ID: mdl-35923208

Branched-chain amino acids (BCAAs), composed of leucine, isoleucine, and valine, are important essential amino acids in human physiology. Decades of studies have revealed their roles in protein synthesis, regulating neurotransmitter synthesis, and the mechanistic target of rapamycin (mTOR). BCAAs are found to be related to many metabolic disorders, such as insulin resistance, obesity, and heart failure. Also, many diseases are related to the alteration of the BCAA catabolism enzyme branched-chain α-keto acid dehydrogenase kinase (BCKDK), including maple syrup urine disease, human autism with epilepsy, and so on. In this review, diseases and the corresponding therapies are discussed after the introduction of the catabolism and detection methods of BCAAs and BCKDK. Also, the interaction between microbiota and BCAAs is highlighted.

16.
Parasit Vectors ; 15(1): 274, 2022 Aug 01.
Article En | MEDLINE | ID: mdl-35915458

BACKGROUND: Infection of Neospora caninum, an important obligate intracellular protozoan parasite, causes reproductive dysfunctions (e.g. abortions) in ruminants (e.g. cattle, sheep and goats), leading to serious economic losses of livestock worldwide, but the pathogenic mechanisms of N. caninum are poorly understood. Mitochondrial dysfunction has been reported to be closely associated with pathogenesis of many infectious diseases. However, the effect of N. caninum infection on the mitochondrial function of hosts remains unclear. METHODS: The effects of N. caninum infection on mitochondrial dysfunction in caprine endometrial epithelial cells (EECs), including intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) contents, mitochondrial DNA (mtDNA) copy numbers and ultrastructure of mitochondria, were studied by using JC-1, DCFH-DA, ATP assay kits, quantitative real-time polymerase chain reaction (RT-qPCR) and transmission electron microscopy, respectively, and the regulatory roles of sirtuin 1 (SIRT1) on mitochondrial dysfunction, autophagy and N. caninum propagation in caprine EECs were investigated by using two drugs, namely resveratrol (an activator of SIRT1) and Ex 527 (an inhibitor of SIRT1). RESULTS: The current study found that N. caninum infection induced mitochondrial dysfunction of caprine EECs, including accumulation of intracellular ROS, significant reductions of MMP, ATP contents, mtDNA copy numbers and damaged ultrastructure of mitochondria. Downregulated expression of SIRT1 was also detected in caprine EECs infected with N. caninum. Treatments using resveratrol and Ex 527 to caprine EECs showed that dysregulation of SIRT1 significantly reversed mitochondrial dysfunction of cells caused by N. caninum infection. Furthermore, using resveratrol and Ex 527, SIRT1 expression was found to be negatively associated with autophagy induced by N. caninum infection in caprine EECs, and the intracellular propagation of N. caninum tachyzoites in caprine EECs was negatively affected by SIRT1 expression. CONCLUSIONS: These results indicated that N. caninum infection induced mitochondrial dysfunction by downregulating SIRT1, and downregulation of SIRT1 promoted cell autophagy and intracellular proliferation of N. caninum tachyzoites in caprine EECs. The findings suggested a potential role of SIRT1 as a target to develop control strategies against N. caninum infection.


Coccidiosis , Neospora , Adenosine Triphosphate , Animals , Cattle , Coccidiosis/parasitology , Coccidiosis/veterinary , DNA, Mitochondrial/genetics , Epithelial Cells , Female , Goats , Mitochondria/genetics , Neospora/genetics , Pregnancy , Reactive Oxygen Species , Resveratrol , Sheep/genetics , Sirtuin 1/genetics
17.
Front Oncol ; 12: 882784, 2022.
Article En | MEDLINE | ID: mdl-36033499

Objective: Triple-negative breast cancer (TNBC) is distinguished by early recurrence and metastases, a high proclivity for treatment resistance, and a lack of targeted medicines, highlighting the importance of developing innovative therapeutic techniques. Salvia chinensis Benth (SCH) has been widely studied for its anticancer properties in a variety of cancers. However, its significance in TNBC treatment is rarely discussed. Our study investigated the anticancer effect of SCH on TNBC and the underlying mechanisms. Methods: First, we used clonogenic, cell viability, flow cytometry, and Transwell assays to assess the effect of SCH on TNBC. Bioinformatic studies, especially network pharmacology-based analysis and RNA sequencing analysis, were performed to investigate the constituents of SCH and its molecular mechanisms in the suppression of TNBC. High-performance liquid chromatography and thin-layer chromatography were used to identify two major components, quercetin and ß-sitosterol. Then, we discovered the synergistic cytotoxicity of quercetin and ß-sitosterol and assessed their synergistic prevention of cell migration and invasion. Breast cancer xenografts were also created using MDA-MB-231 cells to test the synergistic therapeutic impact of quercetin and ß-sitosterol on TNBC in vivo. The impact on the DNA damage and repair pathways was investigated using the comet assay and Western blot analysis. Results: Our findings showed that SCH decreased TNBC cell growth, migration, and invasion while also inducing cell death. We identified quercetin and ß-sitosterol as the core active components of SCH based on a network pharmacology study. According to RNA sequencing research, the p53 signaling pathway is also regarded as a critical biological mechanism of SCH treatment. The comet assay consistently showed that SCH significantly increased DNA damage in TNBC cells. Our in vivo and in vitro data revealed that the combination of quercetin and ß-sitosterol induced synergistic cytotoxicity and DNA damage in TNBC cells. In particular, SCH particularly blocked the inter-strand cross-link repair mechanism and the double-strand breach repair caused by the homologous recombination pathway, in addition to inducing DNA damage. Treatment with quercetin and ß-sitosterol produced similar outcomes. Conclusion: The current study provides novel insight into the previously unknown therapeutic potential of SCH as a DNA-damaging agent in TNBC.

18.
Front Nutr ; 9: 899829, 2022.
Article En | MEDLINE | ID: mdl-35747264

Clinical cases and animal experiments show that high-fat (HF) diet is involved in inflammatory bowel disease (IBD), but the specific mechanism is not fully clear. A close association between long-term HF-induced obesity and IBD has been well-documented. However, there has been limited evaluation of the impact of short-term HF feeding on the risk of intestinal inflammation, particularly on the risk of disrupted metabolic homeostasis. In this study, we analyzed the metabolic profile and tested the vulnerability of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis after short-term HF feeding in mice. The results showed that compared with the control diet (CD), the fatty acid (FA), amino acid (AA), and bile acid (BA) metabolisms of mice in the HF group were significantly changed. HF-fed mice showed an increase in the content of saturated and unsaturated FAs and a decrease in the content of tryptophan (Trp). Furthermore, the disturbed spatial distribution of taurocholic acid (TCA) in the ileum and colon was identified in the HF group using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI). After HF priming, mice on TNBS induction were subjected to more severe colonic ulceration and histological damage compared with their CD counterparts. In addition, TNBS enema induced higher gene expressions of mucosal pro-inflammatory cytokines under HF priming conditions. Overall, our results show that HF may promote colitis by disturbing lipid, AA, and BA metabolic homeostasis and inflammatory gene expressions.

19.
Front Nutr ; 9: 858603, 2022.
Article En | MEDLINE | ID: mdl-35433798

Changes in overall bile acid (BA) levels and specific BA metabolites are involved in metabolic diseases, gastrointestinal, and liver cancer. BAs have become established as important signaling molecules that enable fine-tuned inter-tissue communication within the enterohepatic circulation. The liver, BAs site of production, displayed physiological and functional zonal differences in the periportal zone versus the centrilobular zone. In addition, BA metabolism shows regional differences in the intestinal tract. However, there is no available method to detect the spatial distribution and molecular profiling of BAs within the enterohepatic circulation. Herein, we demonstrated the application in mass spectrometry imaging (MSI) with a high spatial resolution (3 µm) plus mass accuracy matrix-assisted laser desorption ionization (MALDI) to imaging BAs and N-1-naphthylphthalamic acid (NPA). Our results could clearly determine the zonation patterns and regional difference characteristics of BAs on mouse liver, ileum, and colon tissue sections, and the relative content of BAs based on NPA could also be ascertained. In conclusion, our method promoted the accessibility of spatial localization and quantitative study of BAs on gastrointestinal tissue sections and demonstrated that MALDI-MSI was a valuable tool to investigate and locate several BA molecules in different tissue types leading to a better understanding of the role of BAs behind the gastrointestinal diseases.

20.
J Mol Model ; 28(5): 123, 2022 Apr 19.
Article En | MEDLINE | ID: mdl-35438328

Phosphatidylinositol 3-kinase (PI3K) is a key regulatory kinase in the PI3K/AKT/mTOR signaling pathway, which is involved in the regulation of cell proliferation, differentiation, apoptosis, and angiogenesis. Class IA PI3K isoforms γ and δ share a highly homologous ATP binding site and are distinguished by only a few residues around the binding site. Subtype-selective inhibitors have been proven to have great advantages in tumor treatment. Preliminary studies have obtained PI3K inhibitors bearing a benzimidazole structural motif with a certain selectivity for PI3Kδ and PI3Kγ subtypes. On this basis, we investigated the selective inhibitory mechanism of PI3Kδ and PI3Kγ using four developed inhibitors via molecular docking, molecular dynamics, binding free energy calculations, and residue energy decomposition. This study could provide references for the further development of PI3K-isoform-selective inhibitors.


Benzimidazoles , Phosphatidylinositol 3-Kinases , Benzimidazoles/pharmacology , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology
...